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Data Mining of NetworkMeasurements

A short course at the 5th PhD School on Traffic Monitoring and Analysis 

Barcelona 

April 22, 2015 

Mark Crovella 

Goals and Strategy
Today we'll talk about the theory and the practice of some useful data mining techniques
for network data.

My goal is for you to leave with practical knowledge of these techniques, and also an
understanding of the theoretical ideas behind the techniques.

You'll find that the actual methods are simple to apply, but to apply them successfully
requires understanding the theory behind them.

My hope is that you'll be able not to just to apply these methods, but also to extend them
and use them for new problems and in new settings.

Following Along and Experimenting
In keeping with these goals, everything we'll do today -- the slides, and more importantly, all
the code -- is available on github.
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https://github.com/mcrovella/mining-low-dim-network-data
(https://github.com/mcrovella/mining-low-dim-network-data)

The slides and code are together in one document, in the form of an ipython notebook.

Assuming you have ipython installed, I recommend that you download or clone this repo
and work with it during the talk.

After today, please feel free to continue to experiment with the data and the code.

In [1]:

In [2]:

%Set up useful MathJax (Latex) macros. %See
http://docs.mathjax.org/en/latest/tex.html#defining-tex-macros
(http://docs.mathjax.org/en/latest/tex.html#defining-tex-macros) %These are for use in the
slideshow                

I'd like to try to divide the world of network measurements into two categories:

1. Measurements that reflect aggregate human activity.
2. Measurements that do not.

In the first category I would place

network data traffic
traffic timeseries

%matplotlib inline
%config InlineBackend.figure_format='retina'
# import libraries
import numpy as np
import matplotlib as mp
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from IPython.display import Image
from IPython.display import display_html
from IPython.display import display
from IPython.display import Math
from IPython.display import Latex
from IPython.display import HTML
print ''

%%html
<style>
 .container.slides .celltoolbar, .container.slides .hide-in-slideshow {
    display: None ! important;
}
</style>

http://docs.mathjax.org/en/latest/tex.html#defining-tex-macros
https://github.com/mcrovella/mining-low-dim-network-data
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source-destination traffic matrices
social media

blogging/microblogging traffic
mobile location traces
mobile call traffic
web browsing traces
content popularity and user preferences

In the second category I would place

network topology
router level
AS level

network paths
protocol traces

TCP, OSPF, BGP, IEEE 802

And there are some I am not sure of:

Spatial/geographic distribution of network elements
Social network structure
Attack and
malicious traffic

My Claim
In the aggregate, "normal" human activity is frequently low-dimensional.

I'll call this the "low-dimensional phenomenon."

In the rest of this lecture I'll answer these two questions:

1. What does "the low-dimensional phenomenon" mean?
2. Why does "the low-dimensional phenomenon" matter?

What Does the Low-Dimensional Phenomenon
Mean?

1. Effective Dimension
A. Defining Effective Dimension
B. Finding Effective Dimension

2. Empirical Evidence
3. Interpretation:

A. Common Patterns
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B. Latent Factors

Effective Dimension

We'll concern ourselves with tabular measurement data in the form of matrices.

Rows, columns, and matrix elements can correspond to a wide variety of things. Here are
some examples.

Data Type Rows Columns Elements

Network Traffic
time
bins

OD flows Number of Bytes

Network Traffic Sources Destinations Number of Bytes

Social Media
time
bins

Users
Number of
Posts/Tweets/Likes

Location Traces
time
bins

Users Location

Call Traffic
time
bins

Users Calling Volume

Web Browsing, Video
Viewing

Users
Content
Categories

Visit Counts/Bytes
Downloaded

Web Browsing
time
bins

Users
Visit Counts/Bytes
Downloaded

Web Browsing Users Sites/Categories
Visit Counts/Bytes
Downloaded

From an information-theoretic standpoint, an  matrix would seem to require  values
to describe it.

However, in practice such a matrix may not carry as much important information as it
appears.

That is, there is often a smaller, or more "parsimonious," description of this matrix that is a
useful approximation.

There are very many ways one might construct a concise descriptions of a dataset --
choosing a good one is a general problem, called model selection.

We're going to use a flexible and very simple modeling approach based on linear algebra:
effective rank.

m × n mn
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(The right term is "effective rank" but in later discussion I will use "effective dimension"
because I think it is more helpful.)

Let's briefly review some linear algebra.

We'll consider an  real matrix .

The rank of  is the dimension of its column space.

The dimension of a space is the smallest number of (linearly independent) vectors needed to
span the space.

So the dimension of the column space of  is the smallest number of vectors that suffice to
construct the columns of .

More specifically, let's say we have

where the  are the columns of .

Then the rank of  is the size of the smallest set  such that every  can be
expressed as:

One of the remarkable results in linear algebra is that the dimension of the column space of 
 is equal to the dimension of the row space of .

So there is nothing special about the columns; we could have used the rows to define the
rank and the result would be the same.

In other works, .

To talk about when one matrix "approximates" another, we need a "length" for matrices.

We will use the Frobenius norm which is just the usual  norm, treating the matrix as a
vector.

The definition of the Frobenius norm of , denoted , is:

To quantify when one matrix is "close" to another, we use distance in Euclidean space:

m × n A
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To quantify when one matrix is "close" to another, we use distance in Euclidean space:

(where the Euclidean space is the -dimensional space of  matrices.)

Now we can define the rank-  approximation to :

When , the rank-  approximation to  is the closest rank-  matrix to , i.e.,

This can also be considered the best rank-  approximation to  in a least-squares sense.

Working with rank-  approximations

Let's say we have , a rank-  approximation to .

By definition, there is a set  consisting of  vectors such that each column of  can be
expressed as a linear combination of vectors in .

Let us abuse notation and also call the matrix formed by those vectors .

So

for some set of coefficients  that describe the linear combinations of  that yield the
columns of .

So  is  and  is .

Concretely, this is:

A rank-  approximation  is valuable if

 is small compared to , and
 is small compared to  and .

dist(A, B) = ∥A − B .∥F
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In that case we have achieved a reduction in model size without a great loss in accuracy.

Finding rank-  approximations

There is a celebrated method for finding the best rank-  approximation to any matrix: the
Singular Value Decomposition (SVD).

In fact, for an  matrix , the SVD does two things:

1. It gives the best rank-  approximation to  for every  up to the rank of .
2. It gives the distance of the best approximation  from  for each .

The singular value decomposition of a rank-  matrix  has the form:

where

1.  is 
2. The columns of  are mutually orthogonal and unit length, ie., .
3.  is .
4. The columns of  are mutually orthogonal and unit length, ie., .
5. The matrix  is a  diagonal matrix, whose diagonal values are 

.

In terms of the singular value decomposition,

1) The distance of the best rank-  approximation  from  is equal to .

2) The best rank-  approximation to  is formed by taking

 the  leftmost columns of ,
 the  upper left submatrix of , and
 the  leftmost columns of , and constructing

Empirical Evidence
Let's see how this theory can be used in practice, and investigate some real data.

We'll look at OD flow traffic on the Abilene network:

k

k

m × n A

k A k A
A(k) A k

r A

A = UΣV T

U m × r
U U = IU T

V n × r
V V = IV T

Σ r × r
≥ ≥ ⋯ ≥ > 0σ1 σ2 σr

k A(k) A σk

k A

=U ′ k U
=Σ′ k × k Σ
=V ′ k V

= ( .A(k) U ′Σ′ V ′)T



5/4/2015 BarcelonaCourse

http://localhost:8888/notebooks/BarcelonaCourse.ipynb# 8/40

Source: Internet2, circa 2005

In [3]:

Out[3]: ATLA-
ATLA

ATLA-
CHIN

ATLA-
DNVR

ATLA-
HSTN

ATLA-
IPLS

ATLA-
KSCY

ATLA-
LOSA

2003-
09-01
00:00:00

8466132.0 29346537 15792104.0 3646187.0 21756443 10792818.0 14220940

2003-
09-01
00:10:00

20524567.0 28726106 8030109.0 4175817.0 24497174 8623734.0 15695839

2003-
09-01
00:20:00

12864863.0 27630217 7417228.0 5337471.0 23254392 7882377.0 16176022

2003-
09-01
00:30:00

10856263.0 32243146 7136130.0 3695059.0 28747761 9102603.0 16200072

2003-
09-01
00:40:00

10068533.0 30164311 8061482.0 2922271.0 35642229 9104036.0 12279530

2003-
09-01
00:50:00

6886434.0 26797124 9011267.0 3084852.0 23691423 12097067.0 15160907

fp = open('data/net-traffic/AbileneFlows/odnames','r')
odnames = [line.strip() for line in fp]
fp.close()
dates = pd.date_range('9/1/2003',freq='10min',periods=1008)
Atraf = pd.read_table('data/net-traffic/AbileneFlows/X',sep='  ',header
Atraf.index = dates
Atraf



5/4/2015 BarcelonaCourse

http://localhost:8888/notebooks/BarcelonaCourse.ipynb# 9/40

2003-
09-01
01:00:00

4898240.0 30156627 8804811.0 3488872.0 29599650 14222361.0 16047109

2003-
09-01
01:10:00

6248053.0 29814965 9445386.0 4028627.0 22085051 12169131.0 12351694

2003-
09-01
01:20:00

7180983.0 30857813 8848281.0 4365325.0 30503423 9387983.0 14167375

2003-
09-01
01:30:00

7503555.0 31675685 8252067.0 4028992.0 25435393 9935391.0 14640947

2003-
09-01
01:40:00

8202708.0 31505085 7308166.0 4042905.0 29436475 7966885.0 13286314

2003-
09-01
01:50:00

5297330.0 38475090 8567962.0 5934312.0 29466210 7112299.0 14683964

2003-
09-01
02:00:00

4627707.0 33481419 10043297.0 5943747.0 24506432 6387421.0 14713899

2003-
09-01
02:10:00

13819493.0 36646755 11047352.0 7787379.0 27860028 7116898.0 15008541
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In [4]: u,s,vt = np.linalg.svd(Atraf)
fig = plt.figure(figsize=(9,6))
plt.plot(range(1,1+len(s)),s)
plt.xlabel(r'$k$',size=20)
plt.ylabel(r'$\sigma_k$',size=20)
plt.title(r'Singular Values of $A$',size=20)
print ''
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In [5]:

Out[5]: <matplotlib.text.Text at 0x10e2c95d0>

fig = plt.figure(figsize=(9,6))
Anorm = np.linalg.norm(Atraf)
plt.plot(range(1,21),s[0:20])
plt.xlim([0,20])
plt.xlabel(r'$k$',size=20)
plt.ylabel(r'$\sigma_k$',size=20)
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In [6]:

In [7]:

So we are down to 4% relative error using only the 7 vectors  to describe all
the columns of .

Let's look at some other examples:

Source-Destination Traffic Matrices.

Out[7]: array([ 0.97599686,  0.12922614,  0.07240894,  0.05414364,  0.0448824
2,
        0.04251024,  0.0401026 ,  0.03513407,  0.0322399 ,  0.0313955
3])

{ ,… , }u1 u7
A

fig = plt.figure(figsize=(9,6))
Anorm = np.linalg.norm(Atraf)
plt.plot(range(1,21),s[0:20]/Anorm)
plt.xlim([0,20])
plt.xlabel(r'$k$',size=20)
plt.ylabel(r'relative F-norm error',size=20)
plt.title(r'Relative Error of rank-$k$ approximation to $A$',size=20)
print ''

s[0:10]/Anorm
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Here, the matrix is the number of bytes from each source to each destination in a major ISP
over one hour.

This is a plot of the normalized singular values.

Note that Origin-Destination flows are often modeled using a so-called "gravity model."

In this model, the traffic  that enters the network at  and leaves the network at  is
modeled as

Seen from our standpoint, this is simply a rank-1 model. Every column  is a multiple of the
single vector 

Likes on Facebook.

Here, the matrices are

1. Number of likes: Timebins  Users
2. Number of likes: Users  Page Categories
3. Entropy of likes across categories: Timebins  Users

fij i j

=fij αiβj

f∗j
α.

×
×

×
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Source: [Viswinath et al.]

Social Media Activity.

Here, the matrices are

1. Number of Yelp reviews: Timebins  Users
2. Number of Yelp reviews: Users  Yelp Categories
3. Number of Tweets: Users  Topic Categories

×
×

×
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Source: [Viswinath et al.]

User preferences over items.

Example: the Netflix prize worked with partially-observed matrices like this:

Where the rows correspond to users, the columns to movies, and the entries are ratings.

Although the problem matrix was of size 500,000  18,000, the winning approach modeled
the matrix as having rank 20 to 40.

Images.

This is not network measurement data, but good to understand nonetheless:

Image data is often low-dimensional.

For example, here is an original photo:
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In [8]:

Let's look at its spectrum:

In [9]:

This matrix has rank of 512. But its effective rank is low, perhaps 40.

Let's find the closest rank-40 matrix and view it.

Out[8]: <matplotlib.image.AxesImage at 0x10e94e850>

Out[9]: [<matplotlib.lines.Line2D at 0x10e8758d0>]

boat = np.loadtxt('data/images/boat/boat.dat')
import matplotlib.cm as cm
plt.figure()
plt.imshow(boat,cmap = cm.Greys_r)

u,s,vt=np.linalg.svd(boat,full_matrices=False)
plt.figure()
plt.plot(s)
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In [10]:

Interpretations of the Low-Dimensional
Phenomenon

How can we understand this low-dimensional phenomenon in general?

There are two helpful interpretations:

1. Common Patterns
2. Latent Factors

Common Patterns.

In this interpretation, we think of each column of  as a combination of the columns of .

Let's use as our example  the first column of 

The equation above tells us that

A ≈ (U ′Σ′ V ′)T

A U ′

,a1 A

# construct a rank-40 version of the boat
scopy = s.copy()
scopy[40:]=0
boatApprox = u.dot(np.diag(scopy)).dot(vt)
#
plt.figure(figsize=(9,6))
plt.subplot(1,2,1)
plt.imshow(boatApprox,cmap = cm.Greys_r)
plt.title('Rank 40 Boat')
plt.subplot(1,2,2)
plt.imshow(boat,cmap = cm.Greys_r)
plt.title('Rank 512 Boat')
plt.subplots_adjust(wspace=0.5)
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In other words,  (the first column of ) is the "strongest" pattern occurring in , and its
strength is measured by .

Here is an view of the first few columns of  for the traffic matrix data:

In [11]:

≈ + + ⋯ + .a1 v11σ1 u1 v12σ2 u2 v1kσkuk

u1 U A
σ1

UΣ

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x10e8d4090>

u,s,vt = np.linalg.svd(Atraf,full_matrices=False)
uframe = pd.DataFrame(u.dot(np.diag(s)),index=pd.date_range('9/1/2003'
uframe[0].plot()
uframe[1].plot()
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In [12]:

Latent Factors.

In this interpretation, we think of each element of  as the inner product of a row of 
and a row of .

Let's say we are working with a matrix of users and items, say movies as in the Netflix prize.

Recall the structure from a previous slide:

Then the rating that a user gives a move is the inner product of a  element vector that
corresponds to the user, and a  element vector that corresponds to the movie.

We can therefore think of each user's preferences as being captured by point in . This is
a latent factor.

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x10e2cb2d0>

A ≈ (U ′Σ′ V ′)T

A U ′Σ′

V ′
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uframe[2].plot()
uframe[3].plot()
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The remarkable thing is that a person's preferences for all 18,000 movies can be captured in
a 20-element vector!

Source: Koren et al, IEEE Computer, 2009
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Source: Koren et al, IEEE Computer, 2009

Why Does the Low-Dimensional Phenomenon
Matter?
We'll discuss two ways to exploit the low-dimensional phenomenon:

1. Anomaly Detection
2. Matrix Completion

Anomaly Detection via the Low-Dimensional
Phenomenon

The first application of the phenomenon is anomaly detection.

The anomaly detection problem is as follows: given a population , divide the members of 
in a normal set  and an anomalous set .

The most common way to address this problem is to construct a distributional model for 
and identify the set  as those that have low probability under this model. More generally,
one may try to use machine learning to build a classifier that separates  and .

The difficulty with these approaches is that they require labeled training data -- some ground
truth separation of normal and anomalous items must be known in advance.

Instead, if the low-dimensional phenomenon holds, we can do a good job of anomaly
detection without any labeled data.

We make the assumption that in the dataset , the majority of data or users are normal.

Then we can use the low-dimensional phenomenon to separate abnormal data from the
population of normal data.

If  is a set of users, this can be effective for cybersecurity, separating benign from
misbehaving users.

In practice, given a set of measurements:

P P
N O

N
O

N O

P

N
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Assume that “most” observations are normal
Build a low-dimensional (linear) model for them
What is not well predicted is anomalous and most likely some form of misbehavior

In practice, this is a simple process.

Given a data matrix :

1. Compute the Singular value decomposition of ,

2. Compute a low-rank approximation to ,

3. Compute the data not explained by :

4. Indentify the rows of  with largest  norm: these rows correspond to anomalies.

There are two unspecified steps in the process:

1. Selecting the columns of  to be used in forming 
2. Deciding how many of the largest rows of  are anomalies.

For 1, the general idea is to choose a  at the knee of the singular value plot.
For 2, there are statistical methods that generally work reasonably well.

Example 1: Traffic OD Flows

This data consists of the number of bytes flowing between 121 origin-destination pairs in the
Abilene network, sampled at 10 minute intervals, for one week.

Rows are timebins, Columns are source-destination pairs.

First we will look at the columns of .

A

A
UΣ = A.V T

A
N = ( .U ′Σ′ V ′)T

N
O = A − N.

O ℓ2

U N
O

k

U
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In [13]:

Next we will extract the anomalous traffic and look at its volume at each time point.

Out[13]: <matplotlib.text.Text at 0x10e81ad50>

u,s,vt = np.linalg.svd(Atraf,full_matrices=False)
plt.figure(figsize=(10,6))
for i in range(1,13):
    ax = plt.subplot(4,3,i)
    plt.plot(u[:,i-1])
    plt.xlabel('Time')
plt.subplots_adjust(wspace=0.25,hspace=0.45)
plt.suptitle('First Nine Columns of $U$',size=20)



5/4/2015 BarcelonaCourse

http://localhost:8888/notebooks/BarcelonaCourse.ipynb# 24/40

In [14]:

Now we'll choose the top 15 anomalous time points and look at where they fall.

Out[14]: <matplotlib.text.Text at 0x10f03ec90>

unorm = u[:,0:6]
P = unorm.dot(unorm.T)
Ntraf = P.dot(Atraf)
Otraf = Atraf - Ntraf
Onorm = np.linalg.norm(Otraf,axis=1)
plt.plot(Onorm)
plt.xlabel('Time')
plt.title(r'$\ell_2$ Norm of Anomalous Traffic')
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In [15]:

Example 2: Facebook Spatial Likes

This data consists of the number of 'Likes' for each of 9000 users, over 6 months, across the
210 content categories that Facebook assigns to pages.

Rows are users, Columns are categories.

First we'll look at the total number of likes for each user (the row sums).

Out[15]: <matplotlib.text.Text at 0x10f079090>

# choose the top 15 anomalies
anomalies = np.argsort(Onorm)[-15:]
# plot the traffic norm at those points
Anorm = np.linalg.norm(Atraf,axis=1)
plt.plot(Anorm)
plt.plot(anomalies,Anorm[anomalies],'ro')
plt.title('Top 15 Anomalies')
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In [16]:

Now let's check whether the low dimensional phenomenon holds.

In [17]:

Now let's

Out[16]: <matplotlib.text.Text at 0x10f062810>

Out[17]: <matplotlib.text.Text at 0x10f0f4c90>

data = np.loadtxt('data/social/data/spatial_data.txt')
FBSpatial = data[:,1:]
FBSnorm = np.linalg.norm(FBSpatial,axis=1,ord=1)
plt.plot(FBSnorm)
plt.title('Number of Likes Per User')
plt.xlabel('Users')

u,s,vt = np.linalg.svd(FBSpatial,full_matrices=False)
plt.plot(s/np.linalg.norm(FBSpatial))
plt.title('Singular Values of Spatial Like Matrix')
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1. Separate the portion of the data lying in the normal space from the amonalous
space,

2. Identify the top 30 anomalous users (having the largest anomalous component),
and

3. Plot their total number of likes against the set of all users.

In [18]:

Next we'll pick out nine anomalous users and look at their pattern of likes across the 210
categories.

Out[18]: <matplotlib.text.Text at 0x10f09fcd0>

unorm = u[:,0:25]
P = unorm.dot(unorm.T)
N = P.dot(FBSpatial)
O = FBSpatial - N
Onorm = np.linalg.norm(O,axis=1)
# large = np.nonzero(Onorm>100))
# get top 30 anomalies
anomSet = np.argsort(Onorm)[-30:]
plt.plot(FBSnorm)
plt.plot(anomSet,FBSnorm[anomSet],'ro')
plt.title('Top 30 Anomalous Users')
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In [19]:

And let's do the same for nine normal users.

Out[19]: <matplotlib.text.Text at 0x10f061150>

plt.figure(figsize=(9,6))
for i in range(1,10):
    ax = plt.subplot(3,3,i)
    plt.plot(FBSpatial[anomSet[i-1],:])
    plt.xlabel('FB Content Categories')
plt.subplots_adjust(wspace=0.25,hspace=0.45)
plt.suptitle('Nine Example Anomalous Users',size=20)
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In [20]:

Example 3: Facebook Temporal LIkes

This data consists of the number of 'Likes' for each of 9000 users, over 6 months, on a daily
basis

Rows are users, Columns are days.

First we'll look at the singular values.

Out[20]: <matplotlib.text.Text at 0x111607550>

# choose non-anomalous users
set = np.argsort(Onorm)[0:7000]
# that have high overall volume
max = np.argsort(FBSnorm[set])[::-1]
plt.figure(figsize=(9,6))
for i in range(1,10):
    ax = plt.subplot(3,3,i)
    plt.plot(FBSpatial[set[max[i-1]],:])
    plt.xlabel('FB Content Categories')
plt.subplots_adjust(wspace=0.25,hspace=0.45)
plt.suptitle('Nine Example Normal Users',size=20)
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In [21]:

Next, plot the anomalous users as before.

Out[21]: [<matplotlib.lines.Line2D at 0x112f3d550>]

data = np.loadtxt('data/social/data/temporal_data.txt')
FBTemporal = data[:,1:]
FBTnorm = np.linalg.norm(FBTemporal,axis=1,ord=1)
u,s,vt = np.linalg.svd(FBTemporal,full_matrices=False)
plt.plot(s/np.linalg.norm(FBTemporal))
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In [22]:

Now let's look at sample anomalous and normal users.

Out[22]: [<matplotlib.lines.Line2D at 0x112dad690>]

# choose the top 25 columns of U for the normal space
unorm = u[:,0:24]
P = unorm.dot(unorm.T)
N = P.dot(FBTemporal)
O = FBTemporal - N
Onorm = np.linalg.norm(O,axis=1)
# get top 30 anomalies
anomSet = np.argsort(Onorm)[-30:]
plt.plot(FBTnorm)
plt.plot(anomSet,FBTnorm[anomSet],'ro')
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In [23]:

Out[23]: <matplotlib.text.Text at 0x111778590>

plt.figure(figsize=(9,6))
for i in range(1,10):
    ax = plt.subplot(3,3,i)
    plt.plot(FBTemporal[anomSet[i-1],:])
    plt.xlabel('Days')
plt.subplots_adjust(wspace=0.25,hspace=0.45)
plt.suptitle('Nine Example Anomalous Users',size=20)
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In [24]:

Interestingly, what makes a user anomalous seems to have reversed from the case of the
spatial data.

Matrix Completion via the Low Dimensional
Phenomenon

The second set of analyses we will look at concern inferring missing data.

In many situations data is missing or only partially available.

For example, in network measurements, data may be missing due to

Out[24]: <matplotlib.text.Text at 0x10e975950>

# choose non-anomalous users
set = np.argsort(Onorm)[0:7000]
# that have high overall volume
max = np.argsort(FBTnorm[set])[::-1]
plt.figure(figsize=(9,6))
for i in range(1,10):
    ax = plt.subplot(3,3,i)
    plt.plot(FBTemporal[set[max[i-1]],:])
    plt.xlabel('Days')
plt.subplots_adjust(wspace=0.25,hspace=0.45)
plt.suptitle('Nine Example Normal Users',size=20)
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equipment failure
lack of visibility
partial measurement

When dealing with data that reflects human activity, the low rank phenomenon can lend a
helping hand.

Recall that the low rank phenomenon means that the  matrix  is actually only
determined by  values.

This means if we can observe enough values (intuitively, some multiple of ) we may
be able to recover the missing values.

Consider the netflix problem: the number of entries in the (complete)  is 500,000  18,000.
However, if we can model  as having rank , then it may be possible to reconstruct
the entire matrix from only  0.1% of its entries.

Given an arbitrary matrix, observing a subset of its entries provides no knowledge of the
missing entries. But if the matrix is low-rank then there is hope.

In recent years many approaches have arisen for estimating the missing entries of a low-rank
matrix. These approaches fall under the general heading of matrix completion.

The various methods for performing matrix completion are outside our scope, but we can
sketch one general strategy.

Consider a matrix  for which we are given only a subset  of entries. Further, we assume
that we know that  is well approximated by a rank  matrix.

Then as we've seen, we can express  as

Let us denote the known entries in  as .

If we were to start with arbitrary estimates of  and , we could successively improve them
by computing:

and

Where the minimization is performed only over the known elements  Then setting 
 and  we can iterate.

m × n A
km + kn

k(n + m)

A ×
A k = 40
k(m + n)/mn =

A Ω
A k

A
A = U .V T

A AΩ

U V
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Note that each of the two minimizations above is a least-squares problem that can be solved
quickly.

This is the approach taken by lmafit() which is the code we will use.

In [25]:

Let's see how well this works on network traffic data.

We can start with our Abilene traffic data Atraf and hide most entries, then reconstruct
what was missing.

In [26]:

from lmafit import lmafit_mc_adp as lmft

A = Atraf.values
shape = np.shape(A)
avgrms = []
testvals = [x/100.0 for x in range(10)] + [x/10.0 for x in range(1,10)]
for p in testvals:
    rmsvals = []
    for i in range(10):
        mask = (np.random.random_sample(shape) < p)
        Known = np.nonzero(mask)
        dat = A[Known]
        U,VT,Out = lmft(shape[0],shape[1],1,Known,dat,0)
        Est = U.dot(VT)
        rmsvals.append(np.linalg.norm(Atraf-Est)/np.linalg.norm(Atraf))
    avgrms.append(np.mean(np.array(rmsvals)))
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In [27]:

Let us see this in terms of individual flows:

In [28]:

plt.plot(testvals,avgrms,'-')
plt.title('RMS Error vs. Fraction of Traffic Observed - Rank 1')
plt.xlabel('Fraction of Traffic Observed')
plt.ylabel('Relative Error')
plt.ylim(ymin=0)
print ''

Ests = []
p = 0.05
for i in range(10):
    mask = (np.random.random_sample(shape) < p)
    Known = np.nonzero(mask)
    dat = A[Known]
    U,VT,Out = lmft(shape[0],shape[1],1,Known,dat,0)
    Est = U.dot(VT)
    Ests.append(Est)
Est = np.mean(Ests,axis=0)
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In [29]:

Finally, let's take a look at how this performs on image reconstruction:

Out[29]: <matplotlib.text.Text at 0x1146aec10>

plt.figure(figsize=(12,8))
for i in range(1,10):
    ax = plt.subplot(3,3,i)
    plt.plot(A[:,i-1])
    plt.plot(Est[:,i-1],'r-')    
    plt.xlabel('Days')
plt.subplots_adjust(wspace=0.25,hspace=0.45)
plt.suptitle('Nine Example OD Flows Estimated Using 5% Data',size=20)
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In [34]:

In [35]:
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